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Abstraet--A kinetic model for analyzing phase front propagation during freezing of a fine porous medium 
under conditions of moisture diffusion is presented. Crystallization is assumed to take place in a kinetic 
zone according to an experimental function characterizing the crystallization rate. The method was demon- 
strated for the crystallization of a 1-D fine-grained soil medium subject to constant boundary conditions. 
The numerical results were validated against experimental data from the literature. The following con- 
clusions were inferred from the theoretical results : (1) in a closed system the rate of phase front propagation 
can oscillate even under constant boundary conditions ; (2) as the phase front reaches a stationary state, 
the diffusional moisture flux from the non-frozen zone to the kinetic zone vanishes. Copyright © 1996 

Elsevier Science Ltd. 

1. INTRODUCTION 

An understanding of the process of freezing and thaw- 
ing of fluids in porous media is important in many 
branches of scienc~ and engineering, for example in 
biological applications such as cryopreservation of 
biological material.s and cryosurgery [1] and in the 
environmental sciences in connection with the crys- 
tallization and mehing of water in soil in cold climates 
[2]. This paper focuses on the process of water crys- 
tallization in fine-grained soil. 

The peculiarities of the cryogenic structure of fine- 
grained soils depe~ad greatly upon the conditions of 
freezing. Formation of an ice layer creates a water 
concentration gradient, which is the driving force 
behind the moisture diffusion process and causes 
moisture and temperature profile redistribution in 
both the frozen and non-frozen regions [2-5]. Since 
the moisture diffusion coefficients in the frozen zone 
are significantly smaller than those in the non-frozen 
zone, most theoretical models neglect the effect of 
mass transfer in the frozen regions in such systems. 
The phase front is usually modeled as a mathematical 
surface. Introduction of a boundary condition relating 
to the moisture flux at the phase front interface makes 
it necessary to perform extensive numerical cal- 
culations to reach a solution. 

The various numerical methods for solving phase- 
change with moving boundary problems have been 
reviewed in a number of works, including refs. [6, 7]. 
Recently, Voller [8, 9] developed a new computational 
scheme, which modified the source-based method by 
introducing a new source term, defined as a liquid 
volume fraction, as a function of temperature. The 

t Author to whom. correspondence should be addressed. 

method was illustrated for a pure material [8] and a 
binary alloy [9] and was found to be an accurate 
computation method, which can be applied efficiently 
for many solidification problems. 

In this paper, a kinetic model is presented for sol- 
idification in a fine-grained porous medium. The 
model includes a kinetic function, describing the rate 
of ice crystallization, as a function of supersaturation. 
Crystallization is assumed to take place in the kinetic 
zone which is defined as the range within which super 
cooling occurs, thereby eliminating the dis- 
continuation at the boundary and simplifying the 
numerical calculations. Moreover, allowance for 
water diffusion in the kinetic and frozen zones makes it 
possible to investigate the process of cryogenic texture 
formation in the frozen state. Preliminary results relat- 
ing to this model and details about the numerical 
method were presented in [10, 11]. Recent investi- 
gations [3, 12-14] show that modeling the phase front 
as a mathematical surface does not yield a satisfactory 
representation of the system. Unless moisture diffu- 
sion in the supercooling zone is also taken into con- 
sideration, it is impossible to properly describe such 
phenomena as a moisture redistribution process or a 
Schlieren formation in the frozen zone, as reflected in 
the experimental results presented in [4, 12, 13]. 

The present paper is focused on utilization of the 
model for the purpose of studying the instability of 
phase front propagation and is divided into the follow- 
ing sections : firstly, description of the theoretical model 
and validation against experimental results from the 
literature and secondly, theoretical results relating to 
the effect of Lewis and Stefan numbers on redistri- 
bution of the temperature and moisture profiles, as 
well as theoretical analysis of the instability of phase 
front propagation. 
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NOMENCLATURE 

a0 coefficient in equation (9) 
C volumetric specific heat [J m -3 K J] 
D diffusion coefficient [m 2 s-~] 
H length of sample [m] 
9 kinetic function [s- '] 
qw moisture migration flux [kg m 2 s-~] 
k thermal conductivity [W m- t  K ~] 
L ice, concentration [kg kg-t]  
T temperature [K] 
t time [s] 
t* characteristic time of water 

crystallization [s] 
V thermal front velocity [m s-1] 
W moisture [kg kg-  t] 
Ws total moisture [kg kg -1] 
W* equilibrium liquid water concentration 

in frozen soil [kg kg-l]  

x coordinate [m] 
X* thermal front position [m] 
X** crystallization front position [m]. 

Greek symbols 
AH latent heat [J m -3] 

thermal diffusivity [m 2 s 1] 
p density [kg m-3]. 

Dimensionless groups 
Fo = ~t/I-12 Fourier number 
Ste = C(T*o-- T O / W o A H  Stefan number 
Le  = Do/c~ Lewis number. 

Subscripts 
0 initial 
1 left region boundary. 

2. THEORETICAL MODEL 

A schematic description of the system model is 
given in Fig. 1. We consider a transient 1-D problem 
relating to homogeneous fine-grained soil in the range 
0 < x < H (see Fig. 1). Initially the system is at the 
uniform temperature To and has the water content 1410 
(mass of water per unit mass of dry soil). At the time 
t = 0 one side of the domain (at x = 0) obeys the step 
function T = 7"1, which is lower than T~0, defined as 

the water freezing temperature corresponding to the 
moisture W0. Freezing of the soil begins from x = 0 
and propagates in the x direction. X* is the coordinate 
at which T = T~0 and X** is the coordinate at which 
water freezing starts, Ws = W*. The diffusion 
coefficient of the moisture in the non-frozen and kin- 
etic zones is considered to be a function of moisture 
concentration, but is independent of temperature. We 
also assume that the thermal diffusivity is constant. 
For  the above-mentioned system, the energy balance 
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Fig. 1. Schematic description model system. 
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equation is given in equation (1), which has to satisfy 
the initial condition (la)  and boundary conditions 
(lb) and (lc) 

t3 (~xx  ~ AHOL 
~7"__ ~x o~ + (1) Ot C ~3t 

T(O,x) = To (la) 

T(t,O) = T, (lb) 

T(t, H) = To (lc) 

where ct, AH, C and L are the thermal diffusivity, the 
volumetric latent l~eat of solidification, the volumetric 
specific heat, and the ice content (in mass of ice per 
mass of dry soil), :respectively. 

The mass balance of the system is given in equation 
(2), which has to satisfy the initial condition (2a) and 
the boundary conditions (2b) and (2c) : 

O~- -- ~xx D(W) " Ot (2) 

W(0, x) = W0 (2a) 

a w(t, o) 
0 ~  - 0 (25) 

OW(t,H) 
~---S~ = o (2c) 

where D(W) is the diffusion coefficient of the moisture. 
We define the function g(T, W, L) by equation (3), 
which describes the rate of water crystallization : 

OL 
Ot = g(T, W, L). (3) 

Furthermore, we assume that the function g(T, W, L) 
can be determined by equation (4). 

W - W *  
g( T, W, L) = t* (4) 

where W* is the liquid water content in equilibrium 
at the temperature T for fine-grained soils, and t* is 
the characteristic time of water solidification in the 
system. The equilibrium relations for I4" as a function 
of T, as well as the parameter t*, have to be determined 
experimentally for each type of soil. Note that W -  W* 
is the degree of ,~;upersaturation and is the driving 
force behind the crystallization process. 

In order to represent the above equations in dimen- 
sionless form, the :following dimensionless parameters 
are defined : 

7~ T--/~0 w = W  IV* 
~ T ,  ~00 w* = ~00 

£ =  x L D(W) 
f_, = ~ 1) = D(Wo~" (5) 

Note that AT~ = ]~ - -  7"] is the degree of supercooling 
at the initial time at the boundary x = 0. Substitution 

of these dimensionless parameters in equations (1)- 
(4) yields : 

OT 02T 9 
+ (6) 

t3Fo t322 Ste 

~r(o, ~z) = To (6a) 

T(Fo, 0)  = - -  1 ( 6 b )  

T(ro, 1) = To (6c) 

(~Fo = Le /)(W) . 9  (7) 

l~(0, 2) = 1 (7a) 

~W(Fo, O) 
0 (7b) 

a2 

Off'(Fo, l) 
O ~  - 0 ( 7 c )  

where : 

Ste = 
C(To* - T1 ) Do I,V- I~o 

Le = - -  ~ =  
WoAH ~ Fo* 

gt 
F o = - -  Do = D(Wo). (8) 

H z 

In order to solve equation (7), the equilibrium 
moisture content as a function of temperature has to 
be given in dimensionless form. Using the available 
experimental data from the literature [2, 3, 15], we 
have determined that in the temperature range we are 
concerned with i.e. T, < T < T~o, the experimental 
equilibrium data related to the crystallization of water 
in fine-grained soils can be represented by the cor- 
relation : 

W * ( T ) = ( 1 - a 0  7~) I (9) 

where a0 is a constant parameter related to the type 
of the soil. The coupled energy and mass balance 
equations (6) and (7) were solved numerically, 
employing a non-implicit scheme of approximation 
based on central differences with respect to space and 
one-sided differences with respect to time. 

The diffusion coefficient D(W) is approximated for 
points half-way between every two adjacent nodes. A 
simple rapidly accomplished recursive computation 
named 'the double sweep-method' [16] was combined 
with iterations to solve the finite difference equations. 
The boundary conditions for the moisture transfer 
equation were approximated by using both the central 
difference with fictitious nodes and the subsequent 
grid function. More details about the numerical 
method are given in ref. [11]. 

3. RESULTS AND DISCUSSION 

The numerical model was solved for a loamy soil 
type with the following thermophysical properties: 
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thermal  conduct ivi ty  k = 1.2 W m-~ K-~ ,  volumetr ic  
specific heat  C = 2835 kJ m -3 K - l ,  p = 1750 kg m -3, 
initial mois ture  conten t  W0 = 0.26, diffusion 
coefficient ( fo r  Wo = 0.26) Do = 1.25× 10 -7  m 2 s - ' .  
The Lewis n u m b e r  ( fo r  W0 = 0.26) L e  = 0.3 and  
the equi l ibr ium water  freezing tempera ture  T* 
= - 0 . 1 5 ° C .  The characterist ic  t ime of  water  crys- 
tal l ization t* = 900 s. The equi l ibr ium da ta  f rom refs. 
[2, 15] were found to fit the corre la t ion form of  equa- 

t ion (9) with cons tan t  a0 = 7.7. The  exper imental  da ta  
for the diffusion coefficient as a funct ion of  mois ture  
was found to fit the dimensionless  empirical cor- 
r e l a t i o n / )  = 0.92 V¢ 8. The initial condi t ion  To = 3°C 
and  bounda ry  condi t ions  T, = - 1 2 . 5 ° C  (7 ~ =  0.25 
and  S t e  = 0.23) were used in val idat ion of  the model. 

The numerical  results for the dimensionless tem- 
pera ture  profile are compared  with the experimental  
da ta  in Fig. 2(a), and  the results for the dimensionless 
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Fig. 2. Comparison between theoretical results of this work with experimental data from refs. [2, 15]. 

Temperature profile (a) moisture and (b) total moisture. Fo = 0.2, Le = 0.3, Ste  = 0.23, To = 0.25. 
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Fig. 3. Distribution of temperature (a) moisture (b) total 
moisture and (c) crystallization rate for two different Lewis 
numbers: Le = 0.30 and Le = 0.15 (curve 1 and curve 2, 
respectively). Fo = 0.2, Ste = 0.23, ~0 = 0.25 in both cases. 

moisture and total water in Fig. 2(b). It is evident that 
there is good agreement between the theoretical and 
the experimental results. 

The principal characteristics of the crystallization 
process in a system at a fixed time (Fo = 0.2) for two 
different Lewis numbers are shown in Fig. 3(a)-(c). 
Figure 3 (a) shows that the temperature profile has a 
linear form in domains beyond the transformation 
zone. This confirms the existence of quasi-steady heat 
transfer conditions in those domains. The moisture 
content distribution (Fig. 3(b)) is essentially non- 
linear, and is described by an S-curve. The value of if" 
increases monotonously with increasing distance from 

the cold side :~, up to a value corresponding to the soil 
moisture in the non-frozen zone. The sharp increase of 
if:in the kinetic zone reflects the diffusion of moisture 
from the non-frozen zone due to crystallization. This 
process increases the moisture content gradient and 
moisture flux in the direction of the cold boundary, 
resulting in an increase in the total moisture in the 
frozen zone Ws (Ws = ff'+L-). As can be seen from 
the form of curve 1 in Fig. 3(b), the total moisture 
distribution behaves in a complex manner : at first, Ws 
increases with the increasing x, but subsequently it 
decreases to a value corresponding to the equilibrium 
moisture concentration. 

The profile of the crystallization rate is presented in 
Fig. 3(c). Beyond the kinetic crystallization zone, the 
rate of crystallization is negligible. The absence of a 
solid phase in the range :?** < X < ~ is a result of 
the decrease in water content to values below those 
of equilibrium, due to migration of moisture to the 
freezing zone. 

For Ste = 0.23 and Le in the range of 0.3-1.0, the 
transformation zone has a width of about 10% of 
the overall dimension of the system, H. These results 
indicate that simulation of the phase transformation 
zone as an infinitely thin front of freezing, which is 
the approach incorporated in most theoretical models, 
is not suitable for water crystallization in fine-grained 
soil, thereby confirming the validity of the kinetic 
approach proposed in this paper, 

As the Le number increases from 0.15 to 0.3, the 
overall behavior of the system remains essentially the 
same Fig. 3(a)-(c). However, the significance of an 
increase in the Le number is intensification of the 
moisture flux. As a result, there is visible displacement 
of the abnormally high ice capacity zone (Fig. 3(b)), 
together with movement of the location of the 
maximum value of the crystallization rate towards the 
cold boundary and narrowing of the width of the 
kinetic zone (Fig. 3(c)). These results are in agreement 
with experimental results reported in [2, 5, 12]. 

Figure 4 shows the influence of the Ste number on 
the dimensionless total moisture profile. An increase 
in the temperature head (AT l = T0*-- T1), leading to a 
decrease in the Ste number results in localization of 
intensive ice formation in a narrow zone near the 
freezing front (Fig. 4). 

The thermal front velocity 17, the moisture flux 
and the positions of the thermal front X'* and crys- 
tallization front )?** (all in dimensionless form) vs 
the Fourier number Fo are presented in Fig. 5(a)-(c) 
where : 

17 = de* D ~ (10) 
dFoo and ~Tw = c~.~ ~=:r*" 

The changes in the velocity of the thermal front r¢ and 
in the water migration flux ~ are non-monotonous in 
character. The oscillations in 17 and qww appear to be 
caused by the disparity between the moisture and the 
heat transfer rates, which is due in turn to significant 
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Fig. 4. Total moisture profile for Ste = 0.23, 7* 0 = 0.25 (curve 1) compared with Ste = 0.114, To = 0.875 

(curve 2), at constant Fo = 1.8, Le = 0.3. 

differences in the mass and heat diffusivity (under 
these humidity conditions, the former is moisture 
dependent whereas the latter is taken as constant). As 
the front moves away from the cold boundary, the 
moisture content in the vicinity of the front drops, 
due to water crystallization in the transformation 
zone. This leads to a decrease in the diffusion 
coefficient and, accordingly, to reduction of the moist- 
ure flux. Assuming that ~t = const., any decrease in qw 
will lead to an increase in the propagation velocity 
and subsequently to rapid front transference in the 
direction of the moisture field, where the propagation 
velocity again decreases. Increases in the Dolor ratio 
promote singularity of the oscillations, as moisture 
decrease is completely or partly compensated for by 
moisture flow away from the melted zone due to crys- 
tallization (Fig. 3(c)). 

As mentioned before, increases in the Le number 
result in intensification of moisture transfer and move- 
ment of the high ice capacity zone towards the cold 
boundary, creating conditions permitting formation 
of schlieren texture near the cold boundary. The latter 
phenomenon was observed experimentally by Feld- 
man [17] and is typical of open and closed systems. 

The final stage of the freezing process results in 
disappearance of the thermal and crystallization phase 
fronts at a certain distance from the cold boundary 
(Fig. 5(c)), which depends on the temperature head 
and on thermophysical and transport soil properties. 
Furthermore, the results (Fig. 5(b)) show that the 
diffusional flux from the non-frozen zone qww decreases 
to zero as the Fourier number Fo goes to infinity. This 

phenomenon is also observed in the experimental 
studies described by Feldman [17]. It could be ex- 
plained on the basis of the results of the kinetic model 
as follows : crystallization in the kinetic zone causes a 
reduction in water content in the vicinity of the front, 
which produces a moisture concentration gradient 
that is the driving force for water migration. However, 
as the solid phase front become stationary (Fo > 1.6, 
Fig. 5(c)), this driving force is eliminated and accord- 
ingly the water flux is also terminated. 

4. CONCLUSIONS 

(1) A kinetic model is developed for heat and mass 
transfer in fine-grained soils under freezing conditions. 
This approach is based on introduction of the kinetic 
function to describe the rate of crystallization in a 
kinetic zone. Our results show that this approach is 
appropriate for theoretical analysis of such a system. 

(2) Theoretical analysis based on this method 
shows oscillation of the rate of propagation of the 
phase front under specific conditions. This phenom- 
enon corresponds to the process of intensive seg- 
regative ice formation. These results are in agreement 
with experimental results reported in the literature. 

(3) From the theoretical results we infer the exis- 
tence of an important phenomenon, namely ter- 
mination of the water migration flux from the non- 
frozen zone as the phase front reaches a stationary 
state. 
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Le = 0.3, Ste = 0.23, To = 0.25. 
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